# Lesson 30. Multiple Logistic Regression – Part 1

# 1 The multiple linear regression model

- Binary response variable *Y*
- Quantitative or categorical explanatory variables  $X_1, \ldots, X_k$
- Logit form of the model:
- Probability form of the model:

• The explanatory variables can include <u>transformations</u> or <u>interaction terms</u>, like we saw for multiple <u>linear</u> regression

# 2 Interpreting the model

- The fitted model is
- Plug values of  $X_1, \ldots, X_k$  into the fitted model  $\implies$  solve for odds $(\hat{\pi}) = \frac{\hat{\pi}}{1 \hat{\pi}}$  or  $\hat{\pi}$
- The estimated slope  $\hat{\beta}_i$  for explanatory variable  $X_i$  is
- Therefore,  $e^{\hat{\beta}_i}$  is
- In other words:

# 3 Formal inference for multiple logistic regression

| Test for single $\beta_i$                       | <i>z</i> -test<br>(Wald test)                        |
|-------------------------------------------------|------------------------------------------------------|
| CI for $\beta_i$                                | $\hat{\beta}_i \pm z_{\alpha/2} S E_{\hat{\beta}_i}$ |
| Test for overall model<br>Compare nested models | LRT test<br>Nested LRT test                          |

## 3.1 *z*-test (Wald test) for the slope of a single predictor

- Question: after we account for the effects of all the other predictors, does the predictor of interest *X<sub>i</sub>* have a significant association with *Y*?
- Formal steps:
  - 1. State the hypotheses:

$$H_0: \beta_i = 0$$
 versus  $H_A: \beta_i \neq 0$ 

2. Calculate the test statistic:

$$z = \frac{\hat{\beta_i}}{SE_{\hat{\beta}}}$$

- 3. Calculate the *p*-value:
  - If the conditions for logistic regression hold, then the sampling distribution of the test statistic under the null hypothesis is a standard Normal distribution:

$$p$$
-value = 2 $[1 - P(Normal(0,1) < |z|)]$ 

4. State your conclusion, based on the given significance level  $\alpha$ 

If we reject  $H_0$  (*p*-value  $\leq \alpha$ ):

We see evidence that  $\frac{X_i}{X_i}$  is significantly associated with  $\frac{Y}{X_i}$ .

If we fail to reject  $H_0$  (*p*-value >  $\alpha$ ):

We do not see evidence that  $X_i$  is significantly associated with  $Y_i$ .

#### 3.2 Confidence intervals for the slope of a single predictor

• The  $100(1 - \alpha)$ % confidence interval for the slope  $\beta_i$  is

$$(\hat{\beta}_i - z_{\alpha/2}SE_{\hat{\beta}_i}, \hat{\beta}_i + z_{\alpha/2}SE_{\hat{\beta}_i})$$

• The  $100(1 - \alpha)$ % confidence interval for the odds ratio  $e^{\beta_i}$  is

$$(e^{\hat{\beta}_i - z_{\alpha/2}SE_{\hat{\beta}_i}}, e^{\hat{\beta}_i + z_{\alpha/2}SE_{\hat{\beta}_i}})$$

## 3.3 Likelihood ratio test (LRT) for model utility

- Question: Is the overall model effective?
- Formal steps:
  - 1. State the hypotheses:

$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0$$
 versus  $H_A:$  at least one  $\beta_i \neq 0$ 

2. Calculate the test statistic:

$$G = \underbrace{-2\log(L_0)}_{\text{null deviance}} - \underbrace{(-2\log(L))}_{\text{residual deviance}}$$

- 3. Calculate the *p*-value:
  - If the conditions for logistic regression hold, then the sampling distribution of the test statistic under the null hypothesis is  $\chi^2$  with *k* degrees of freedom:

$$p\text{-value} = 1 - P(\chi^2(df = k) < G)$$

4. State your conclusion, based on the given significance level  $\alpha$ 

If we reject  $H_0$  (*p*-value  $\leq \alpha$ ):

We see significant evidence that the model is effective.

If we fail to reject  $H_0$  (*p*-value >  $\alpha$ ):

We do not see significant evidence that the model is effective.

#### 3.4 Nested likelihood ratio test (LRT) to compare models

• Question: is the full or reduced model better?

Full model: logit( $\pi$ ) =  $\beta_0 + \beta_1 X_1 + \dots + \beta_{k_1} X_{k_1} + \beta_{k_1+1} X_{k_1+1} + \dots + \beta_{k_1+k_2} X_{k_1+k_2}$ Reduced model: logit( $\pi$ ) =  $\beta_0 + \beta_1 X_1 + \dots + \beta_{k_1} X_{k_1}$ 

- Formal steps:
  - 1. State the hypotheses:

 $H_0: \ \beta_{k_1+1} = \beta_{k_1+2} = \dots = \beta_{k_1+k_2} = 0$  (reduced model is more effective)  $H_A: \text{ at least one } \beta_i \neq 0 \ (i \in \{k_1+1, \dots, k_1+k_2\})$  (full model is more effective)

2. Calculate the test statistic:

G = (residual deviance for reduced model) - (residual deviance for full model)

- 3. Calculate the *p*-value:
  - If the conditions for logistic regression hold, then the sampling distribution of the test statistic under the null hypothesis is  $\chi^2$  with  $k_2$  degrees of freedom:

$$p$$
-value =  $1 - P(\chi^2(df = k_2) < G)$ 

4. State your conclusion, based on the given significance level  $\alpha$ 

If we reject  $H_0$  (*p*-value  $\leq \alpha$ ):

We see significant evidence that the full model is more effective.

If we fail to reject  $H_0$  (*p*-value >  $\alpha$ ):

We do not see significant evidence that the full model is more effective.

- A Plots for Part 2
- A.1 Example 2



## A.2 Example 3

