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Lesson 30. Multiple Logistic Regression – Part 1

1 _emultiple linear regression model

● Binary response variable Y

● Quantitative or categorical explanatory variables X1, . . . , Xk

● Logit form of themodel:

● Probability form of themodel:

● _e explanatory variables can include transformations or interaction terms, like we saw for multiple linear
regression

2 Interpreting themodel

● _e ûttedmodel is

● Plug values of X1, . . . , Xk into the ûttedmodelÔ⇒ solve for odds(π̂) = π̂
1 − π̂

or π̂

● _e estimated slope β̂i for explanatory variable Xi is

● _erefore, e β̂ i is

● In other words:
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3 Formal inference for multiple logistic regression

Test for single βi
z-test

(Wald test)

CI for βi β̂i ± zα/2SEβ̂ i

Test for overall model
Compare nestedmodels

LRT test
Nested LRT test

3.1 z-test (Wald test) for the slope of a single predictor

● Question: a�er we account for the eòects of all the other predictors, does the predictor of interest Xi have a
signiûcant association with Y?

● Formal steps:

1. State the hypotheses:
H0 ∶ βi = 0 versus HA ∶ βi ≠ 0

2. Calculate the test statistic:

z = β̂i
SEβ̂ i

3. Calculate the p-value:
○ If the conditions for logistic regression hold, then the sampling distribution of the test statistic under

the null hypothesis is a standard Normal distribution:

p-value = 2[1 − P(Normal(0, 1) < ∣z∣)]

4. State your conclusion, based on the given signiûcance level α

If we reject H0 (p-value ≤ α):

We see evidence that Xi is significantly associated with Y .

If we fail to reject H0 (p-value > α):

We do not see evidence that Xi is significantly associated with Y .

3.2 Conûdence intervals for the slope of a single predictor

● _e 100(1 − α)% conûdence interval for the slope βi is

(β̂i − zα/2SEβ̂ i
, β̂i + zα/2SEβ̂ i

)

● _e 100(1 − α)% conûdence interval for the odds ratio eβ i is

(e β̂ i−zα/2SEβ̂ i , e β̂ i+zα/2SEβ̂ i )
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3.3 Likelihood ratio test (LRT) for model utility

● Question: Is the overall model eòective?

● Formal steps:

1. State the hypotheses:

H0 ∶ β1 = β2 = ⋯ = βk = 0 versus HA ∶ at least one βi ≠ 0

2. Calculate the test statistic:
G = −2 log(L0)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

null deviance

− (−2 log(L))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

residual deviance

3. Calculate the p-value:
○ If the conditions for logistic regression hold, then the sampling distribution of the test statistic under

the null hypothesis is χ2 with k degrees of freedom:

p-value = 1 − P(χ2(df = k) < G)

4. State your conclusion, based on the given signiûcance level α

If we reject H0 (p-value ≤ α):

We see significant evidence that the model is effective.

If we fail to reject H0 (p-value > α):

We do not see significant evidence that the model is effective.

3.4 Nested likelihood ratio test (LRT) to comparemodels

● Question: is the full or reducedmodel better?

Full model: logit(π) = β0 + β1X1 + ⋅ ⋅ ⋅ + βk1Xk1 + βk1+1Xk1+1 + ⋅ ⋅ ⋅ + βk1+k2Xk1+k2

Reducedmodel: logit(π) = β0 + β1X1 + ⋅ ⋅ ⋅ + βk1Xk1

● Formal steps:

1. State the hypotheses:

H0 ∶ βk1+1 = βk1+2 = ⋯ = βk1+k2 = 0 (reducedmodel is more eòective)
HA ∶ at least one βi ≠ 0 (i ∈ {k1 + 1, . . . , k1 + k2}) (full model is more eòective)

2. Calculate the test statistic:

G = (residual deviance for reducedmodel) − (residual deviance for full model)

3. Calculate the p-value:
○ If the conditions for logistic regression hold, then the sampling distribution of the test statistic under

the null hypothesis is χ2 with k2 degrees of freedom:

p-value = 1 − P(χ2(df = k2) < G)
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4. State your conclusion, based on the given signiûcance level α

If we reject H0 (p-value ≤ α):

We see significant evidence that the full model is more effective.

If we fail to reject H0 (p-value > α):

We do not see significant evidence that the full model is more effective.

A Plots for Part 2

A.1 Example 2

A.2 Example 3
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